Math 250
Name (Print):
Fall 2013

Quiz 8

1. (10 pts)A matrix and its characteristic polynomial is given. Determine all values of c so that the matrix is not diagonalizable.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & -1 & 0 \\
6 & 6 & 0 \\
0 & 0 & c
\end{array}\right]} \\
-(t-c)(t-3)(t-4)
\end{gathered}
$$

Ans: The only possible choices for c are $c=3$ and $c=4$.
When $c=3$

$$
A-c I=\left[\begin{array}{ccc}
-2 & -1 & 0 \\
6 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So its simplified form is

$$
R=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

which clearly has 2 free variables. Hence when $c=3$ the matrix IS diagonalizable. When $c=4$

$$
A-c I=\left[\begin{array}{ccc}
-3 & -1 & 0 \\
6 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So its simplified form is

$$
R=\left[\begin{array}{lll}
3 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

which also clearly has 2 free variables. Hence when $c=4$ the matrix IS diagonalizable.

Conclusion: There is NO value of c that would make the matrix NOT diagonalizable.
2. (10 pts) A matrix A and its characteristic polynomial is given. Find, if possible, an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
7 & 6 \\
-1 & 2
\end{array}\right]} \\
& (t-4)(t-5)
\end{aligned}
$$

Ans: When $t=4$

$$
A-t I=\left[\begin{array}{cc}
3 & 6 \\
-1 & -2
\end{array}\right]
$$

so an eigenvector is $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. When $t=5$

$$
A-t I=\left[\begin{array}{cc}
2 & 6 \\
-1 & -3
\end{array}\right]
$$

so an eigenvector is $\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
So

$$
\begin{gathered}
D=\left[\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right] \\
P=\left[\begin{array}{cc}
-2 & -3 \\
1 & 1
\end{array}\right] .
\end{gathered}
$$

